方程式1和TI的TPS62130降压转换器用于绘制反馈引脚电压及相应输出电压情况,其为反馈分压器电阻的函数(请参见图3)。该电压图基于理想电阻,其可产生一个3.3V的输出电压,并且反馈引脚电压为0.8V。需要考虑的唯一误差项是产品说明书中规定的100nA最大反馈漏电流。 图3表明,反馈引脚电压随反馈分压器电阻增加而下降。由于反馈引脚电压得到补偿,转换器输出也得到补偿。低电阻时,没有反馈引脚电压的补偿,并且输出调节至设计规定的3.3V。
如果电阻器R2使用400kΩ的建议最大值(得到1650KΩ总分压电阻),则漏电流仅产生较小的输出电压下降。一般而言,产品说明书规定电阻器最大值是为了让输出电压维持在产品说明书规定精确度范围内。
3、噪声敏感性
电阻式分压器是转换器的一个噪声源。这种噪声也称作热噪声,分压器使用大电阻值时,这种噪声增加。
另外,大电阻会使更多噪声耦合进入转换器中。产生这种噪声的源头有很多,包括 AM 和 FM 无线电波、手机信号和 PCB 上的开关式转换器或者 RF 发射器。噪声甚至可以来自开关式DC/DC转换器本身,特别是 PCB 布局方法不当时。由于电阻式分压器连接反馈引脚,因此转换器闭环增益会放大噪声,从而出现在输出端。要想降低对其他噪声源的敏感性,设计人员可以使用更小的反馈电阻、更理想的电路板布局或者实施屏蔽。使用小反馈电阻的确可以降低噪声敏感性,但代价是效率稍有降低。
4、控制环路、瞬态响应和转换器稳定性
理想状态下,在使用网络分析仪测量时,一个稳定的转换器应有至少45°的相位裕量。这么大的相位裕量降低甚至消除了输出电压振铃,从而防止输入电压瞬态或者负载瞬态期间对电压敏感型负载的破坏。
根据不同的控制拓扑,产品说明书可能会要求或者建议电阻式反馈网络使用前馈电容( CFF )。图4显示了这种装置。给电阻式分压器添加前馈电容可产生零点和极点,增加转换器的相位裕量和交叉频率,从而获得一个更高带宽、高稳定性的系统。
由图4所示电路传输函数,分别利用方程式2和3计算出零点fz和极点fp:
很明显,零点和极点都与电阻分压器和前馈电容所使用的值有关。因此,增加或降低电阻值来优化效率、电压精度或者噪声,会改变系统的整体环路。要想保住稳定性,需要根据前面的零点或者是产品说明书建议的零点(哪个值可用,就用哪个值),用方程式4计算一个新的CFF值:
设计实例3
通过使用一个降压转换器,我们看到了电阻式分压器对转化器稳定性的影响。本例中,我们使用了TI TPS62240降压转换器,并且Vin=3.6V,Vout=1.8V,Lout=2.2uH,Cout=10uF,Iload=300mA。
图5和图6分别显示了三种不同电阻式分压器网络的闭环响应及其相应瞬态响应。每个网络都使用一个前馈电容,以描述分压器网络组件如何改变降压转换器稳定性。当使用分压器网络组件的产品说明书建议值时(R1=365 kΩ,,R2=182 kΩ和CFF =22pF),转换器稳定,并且相位裕量为59°。它的瞬态响应对此进行了验证,其输出电压稍许下降,并且没有振荡。
当反馈分压器电阻按照比例降至R1=3.65kΩ,和R2=1.82 kΩ,但使用相同的前馈电容CFF=22pF时,反馈网络的零点和极点将发生变化。频率响应表面转换器不太稳定,相位裕量为40°。转换器的瞬态响应证明输出电压压降更大,且振铃更多。为了维持原始频率响应和稳定性,我们重新计算CFF值,用于新的反馈电阻值。
利用方程式4,使用更小电阻值,前馈电容为2200pF,可计算得到新值。这样得到的结果与第一种情况类似。相位裕量56°,转换器稳定,其瞬态响应得到验证,输出电压微降,并且没有振荡。
对于一个在其控制拓扑中使用前馈电容的转换器来说,改变电阻式分压器的值很容易让转换器稳定降低。但是这个例子仅仅表明,只要前馈电容调节适当,改变这些值便可维持相同的频率响应和瞬态响应。
特殊情况设计
如果设计人员必须使用前馈电容来提高稳定性,且一些转换器的内部补偿要求特定的CFF值。这种情况下,不应使用方程式4。设计人员应使用产品说明书的建议设计方程式。例如,TITPS61070便有高侧反馈电阻器(R1)的内部补偿。它的产品说明书建议使用下列设计方程式,用于添加一个与R1并联的电容:结论
电阻式反馈分压器或者网络会影响 DC / DC 转换器的效率、输出电压精确度、噪声敏感度和稳定性。要想获得具体产品说明书所列的性能,给反馈组件选择使用产品说明书建议值非常重要。另外,有些时候系统要求可能会背离这些建议,以达到其他一些设计目标。在理解这些不同参数之间的优缺点以后,设计人员才能正确地选择更大或者更小的电阻来满足其应用需求。