由于其高效率和出色的EMI性能,无滤波器数字输入D类放大器已成为消费电子设备中驱动扬声器的公认标准。这是因为它们不受与模拟对应物相关的电路板设计问题的影响,最具体地说是信号完整性。单通道数字D类放大器可以放置在电路板上的远程位置,以最大限度地减少大电流电池和扬声器负载连接的布线。这些放大器不需要模拟输入D类设计所需的DAC和线路驱动器。因此,空间和系统成本下降,设计变得更加简单。许多D类放大器接受脉冲编码调制(PCM)或I类放大器2需要三根导线的 S 数据:BCLK、LRCLK 和 DIN(图 2)。PCM 数据格式不需要调制器或应用处理器上数据的上采样来提供立体声数据。
然而,一些传统的数字输入放大器存在一些缺点。其中一个限制是需要一个单独的、干净的主时钟(MCLK)来得出无抖动的采样时钟。其他放大器提供可调采样速率和/或位深度,但这可能需要复杂的编程。此外,大多数数字输入放大器需要两个电源电压:低数字电源电压(1.8V)和高扬声器电源电压(2.5V至5.5V)。与其使用相关的另一个问题是EMI。对于高质量音频应用,许多D类放大器需要额外的滤波来限制EMI的影响,从而进一步增加电路板尺寸/成本。在选择放大器连接到触觉驱动器时,快速的导通时间(小于几毫秒)很重要,否则该器件必须保持永久通电状态,从而导致便携式设备的电池消耗得更快。
图3所示的IC解决了这些设计问题的所有方面,并具有提供更简单、更小、更低功耗的解决方案的额外优势。
图3.MAX98360数字D类放大器
与旧的D类放大器不同,该IC使用自动采样率和位深度配置,无需复杂的编程,并提供简单有效的“即插即用”音频解决方案。它具有灵活的音频接口,支持I2S、左对齐和 8 通道时分复用 (TDM) 数据格式。它接受 8kHz、16kHz、32kHz、44.1kHz、48kHz、88.2kHz 和 96kHz 采样速率,I中的数据字可以是 16 位、24 位或 32 位2S 和左对齐模式以及 TDM 模式下的 16 位或 32 位。10μV 保证了高品质音频有效值输出噪声、80dB PSRR 和 110dB 动态范围规格,对于扬声器靠近耳朵的设备(例如 AR/VR 和可穿戴设备)以及在安静环境中使用的设备(睡眠辅助设备)来说,这些规格尤其重要。
与其他D类放大器相比,该放大器具有多种功率优势。它只能采用一个电源电压(2.5V至5.5V)工作。它可以接受低至 1.2V 的输入逻辑电压电平(这意味着不需要电平转换器),但它足够坚固,可以承受高达 5.5V 的输入电压。它还以高达 92% 的效率运行,从而减少电池消耗。
另一个有益的特性是,如果DAIn引脚保持低电平,IC会自动进入超低功耗模式,在该模式下,IC吸收1.5μA的微小待机电流。这大大降低了功耗,在没有主机 GPIO 可用于控制 EN 引脚的应用中非常有益。但是,需要注意的是,EN引脚可用于通过将IC置于关断模式来实现额外的节能效果,在该模式下,IC仅消耗15nA电流。
方便的是,它还具有非常快的1ms导通时间(比类似的D类放大器快4倍),即使在连接到LRA触觉驱动器时,也可以在超低功耗1.5μA待机模式下等待。
该 IC 还具有其他一些显著优势,有助于最大限度地减小电路板尺寸/成本。首先,它有1.9毫米的微小尺寸。29 引脚 WLP 具有巧妙的引脚布局,旨在消除对昂贵电路板过孔的需求。如图4所示,GAIN_SLOT引脚(位于封装中心)可以方便地连接到VDD或 GND(直接或使用电阻器)或保持未连接状态,以提供 I2S/左对齐增益设置如表1所示。

图4.将GAIN_SLOT连接到 VDD或 GND 用于所需的增益设置。
GAIN_SLOT | 我2S/左对齐增益 (dB) |
连接到接地 | 12 |
无关 | 9 |
连接到 VDD | 6 |
连接到 VDD(通过100kO电阻) | 3 |
连接到接地(通过 100kO 电阻) | -3 |
其次,该器件无需额外的D类滤波即可实现图5所示的卓越EMI性能。由于只需要一个外部旁路电容器,因此整体解决方案尺寸仅为3.69mm2.
图5.MAX98360 EMI性能,采用12in.带状线负载。
总结
随着音频接口迅速成为电池供电的可穿戴设备、物联网设备和其他类型的小型便携式电子设备的普遍功能,设计人员正在寻找更简单、更具成本效益的方法来为其设备添加高质量音频。在此设计解决方案中,我们回顾了将某些D类放大器集成到空间受限应用中的困难。我们可以得出结论,新一代灵活的低功耗数字输入D类音频放大器为将音频集成到任何类型的电子设备中的任务带来了“即插即用”的简单性,使其成为便携式设备,可穿戴设备和物联网设备的理想选择。MAX98360除采用9引脚WLP封装外,还提供10引脚FC2QFN封装。